From 1 - 3 / 3
  • The data set was produced for the work detailed in ''The response of ice sheets to climate variability'' by K Snow et al (2017, Geophys Research Letters). A coupled ice sheet-ocean model is configured in an idealised setting with an inland-deepening bedrock, forced by far-field hydrographic profiles representative of the Amundsen Sea continental shelf. Similar to observed variability, the thermocline depth in the far-field is moved up and down on various times scales as detailed in the publication, with periods ranging from 2 to ~50 years. Bedrock elevation is provided, and annual melt rate and ice thickness (or sub-annual for short time scales) is provided as well for each forcing period. In addition, similar experiments were carried out with an ice-only model with parameterised forcing. These outputs are provided too.

  • This dataset provides model output for 20th and 21st-century ice-ocean simulations in the Amundsen Sea. The simulations are performed with the MITgcm model at 1/10 degree resolution, including components for the ocean, sea ice, and ice shelf thermodynamics. Atmospheric forcing is provided by the CESM1 climate model for the historical period (1920-2005) and four future scenarios (2006-2100), using 5-10 ensemble members each. The open ocean boundaries are forced by either the corresponding CESM1 simulation or a present-day climatology. The simulations were completed in 2022 by Kaitlin Naughten at the British Antarctic Survey (Polar Oceans team). UKRI Fund for International Collaboration NE/S011994/1

  • This dataset provides model output for 20th-century ice-ocean simulations in the Amundsen Sea, Antarctica. The simulations are performed with the MITgcm model at 1/10 degree resolution, including components for the ocean, sea ice, and ice shelf thermodynamics. Atmospheric forcing is provided by the CESM Pacific Pacemaker Ensemble, using 20 members from 1920-2013. An additional simulation is forced with the ERA5 atmospheric reanalysis from 1920-2013. The simulations were completed in 2021 by Kaitlin Naughten at the British Antarctic Survey (Polar Oceans team). Supported by UKRI Fund for International Collaboration NE/S011994/1.